PropertyValue
?:abstract
  • Coronavirus disease (COVID-19), a life-threatening disease, is caused by SARS-CoV-2. The targeted therapeutics of small molecules helps the scientific community to fight against SARS-CoV-2. In this article, some oxazine substituted 9-anilinoacridines (A1–A48) was designed by docking, MM-GBSA and molecular dynamics (MD) simulation studies for their COVID-19 inhibitory activity. The docking of ligands A1–A48 against SARS-CoV-2 (PDB ID: 5R82) are performed by using Glide module, in silico ADMET screening by QikProp module, binding energy using Prime MM-GB/SA module, MD simulation by Desmond module and atomic charges were derived by Jaguar module of Schrodinger suit 2019-4. Compound A38 has the highest G-score (−7.83) when compared to all the standard compounds which are proposed for COVID-19 treatment such as ritonavir (−7.48), lopinavir (−6.94), nelfinavir (−5.93), hydroxychloroquine (−5.47) and mataquine (−5.37). Compounds A13, A23, A18, A7, A48, A46, A32, A20, A1 and A47 are significantly active against SARS-CoV-2 main protease when compared with hydroxychloroquine and mataquine. The residues GLN19, THR24, THR25, THR26, LEU27, HIE41, SER46, MET49, ASN119, ASN142, HIE164, MET165, ASP187, ARG188 and GLN189 of SARS-CoV-2 main protease play a crucial role in binding with ligands. The in silico ADMET properties of the molecules are within the recommended values. The binding free energy was calculated using PRIME MM-GB/SA studies. From the ligands A38, A13, A23, A18, A7, A48 and A46 with significant Glide scores may produce significant COVID-19 activity for further development. Compound A38 was subjected to MD simulation at 100 ns to study the dynamic behaviour of protein–ligand complex. Communicated by Ramaswamy H. Sarma
?:creator
?:doi
?:doi
  • 10.1080/07391102.2020.1798285
?:journal
  • Journal_of_biomolecular_structure_&_dynamics
?:license
  • no-cc
?:pdf_json_files
  • document_parses/pdf_json/e814b7a62337f48e430d23ef10f0dccab4f47f57.json
?:pmc_json_files
  • document_parses/pmc_json/PMC7441781.xml.json
?:pmcid
?:pmid
?:pmid
  • 32720578.0
?:publication_isRelatedTo_Disease
?:sha_id
?:source
  • Medline; PMC
?:title
  • Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking, free energy calculation and molecular dynamics studies
?:type
?:year
  • 2020-07-28

Metadata

Anon_0  
expand all