?:abstract
|
-
DISCLAIMER In an effort to expedite the publication of articles related to the COVID-19 pandemic, AJHP is posting these manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. PURPOSE There are currently no FDA-approved medications for the treatment of coronavirus disease 2019 (COVID-19). At the onset of the pandemic, off-label medication use was supported by limited or no clinical data. We sought to characterize experimental COVID-19 therapies and identify safety signals during this period. METHODS We conducted a non-interventional, multicenter, point prevalence study of patients hospitalized with suspected/confirmed COVID-19. Clinical and treatment characteristics within a 24-hour window were evaluated in a random sample of up to 30 patients per site. The primary objective was to describe COVID-19-targeted therapies. The secondary objective was to describe adverse drug reactions (ADRs). RESULTS A total of 352 patients treated for COVID-19 at 15 US hospitals From April 18 to May 8, 2020, were included in the study. Most patients were treated at academic medical centers (53.4%) or community hospitals (42.6%). Sixty-seven patients (19%) were receiving drug therapy in addition to supportive care. Drug therapies used included hydroxychloroquine (69%), remdesivir (10%), and interleukin-6 antagonists (9%). Five patients (7.5%) were receiving combination therapy. The rate of use of COVID-19-directed drug therapy was higher in patients with vs patients without a history of asthma (14.9% vs 7%, P = 0.037) and in patients enrolled in clinical trials (26.9% vs 3.2%, P < 0.001). Among those receiving drug therapy, 8 patients (12%) experienced an ADR, and ADRs were recognized at a higher rate in patients enrolled in clinical trials (62.5% vs 22%; odds ratio, 5.9; P = 0.028). CONCLUSION While we observed high rates of supportive care for patients with COVID-19, we also found that ADRs were common among patients receiving drug therapy, including those enrolled in clinical trials. Comprehensive systems are needed to identify and mitigate ADRs associated with experimental COVID-19 treatments.
|