Property | Value |
?:abstract
|
-
PURPOSE: To develop and externally validate a multivariate prediction model for the prediction of acute kidney injury (AKI) in COVID-19, based on baseline renal perfusion from contrast-enhanced CT together with clinical and laboratory parameters. METHODS: In this retrospective IRB-approved study, we identified COVID-19 patients who had a standard-of-care contrast-enhanced abdominal CT scan within 5 days of their COVID-19 diagnosis at our institution (training set; n = 45, mean age 65 years, M/F 23/22) and at a second institution (validation set; n = 41, mean age 61 years, M/F 22/19). The CT renal perfusion parameter, cortex-to-aorta enhancement index (CAEI), was measured in both sets. A multivariate logistic regression model for predicting AKI was constructed from the training set with stepwise feature selection with CAEI together with demographical and baseline laboratory/clinical data used as input variables. Model performance in the training and validation set was evaluated with ROC analysis. RESULTS: AKI developed in 16 patients (35.6%) of the training set and in 6 patients (14.6%) of the validation set. Baseline CAEI was significantly lower in the patients that ultimately developed AKI (P = 0.003). Logistic regression identified a model combining baseline CAEI, blood urea nitrogen, and gender as most significant predictor of AKI. This model showed excellent diagnostic performance for prediction of AKI in the training set (AUC = 0.89, P < 0.001) and good performance in the validation set (AUC 0.78, P = 0.030). CONCLUSION: Our results show diminished renal perfusion preceding AKI and a promising role of CAEI, combined with laboratory and demographic markers, for prediction of AKI in COVID-19.
|
?:creator
|
|
?:doi
|
-
10.1007/s00261-020-02823-w
|
?:doi
|
|
?:journal
|
|
?:license
|
|
?:pdf_json_files
|
-
document_parses/pdf_json/30ebaeb3bdea91150594d2443b21ad7450c445aa.json
|
?:pmc_json_files
|
-
document_parses/pmc_json/PMC7584857.xml.json
|
?:pmcid
|
|
?:pmid
|
|
?:pmid
|
|
?:publication_isRelatedTo_Disease
|
|
?:sha_id
|
|
?:source
|
|
?:title
|
-
Multivariate analysis of CT imaging, laboratory, and demographical features for prediction of acute kidney injury in COVID-19 patients: a Bi-centric analysis
|
?:type
|
|
?:year
|
|